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ABSTRACT

This work develops a resource management strategy for a
wireless sensor network of bearings-only sensors. Specif-
ically, the resource manager determines which nodes ac-
tively sense and communicate during each snapshot in or-
der to achieve a tolerable level of geolocalization accuracy
while attempting to maximize the effective lifetime of the
network. This work compares three energy-related met-
rics. The traditional metric that summarizes the energy us-
age over a single snapshot consists of the first metric. The
other two metrics represent the current lifetimes of the cur-
rently active node set and the next active node set. These
metrics can achieve load balancing of the nodes without
resorting to computationally demanding non-myopic opti-
mization. For any of the three metrics, the activation deci-
sion is performed in a decentralized manner over the active
set of nodes. Each active node transmits just far enough to
reach all the active nodes for information sharing and the
potentially active nodes for information handoff. In deter-
mining the active set, partial network knowledge is consid-
ered. The partial network approach assumes that a node
only knows the location of itself, the previous active set,
and neighboring nodes. Simulations demonstrate the ad-
vantage of the current lifetime metrics over the more tradi-
tional energy based metric.

1 INTRODUCTION

Dense networks of unattended ground sensors (UGS)
promise to provide an effective and affordable solution for
surveillance and reconnaissance. To enhance the sustain-
ability and survivability of the soldier and the sensor net-
work, it is very important to develop resource management
techniques so that only the most effective UGS nodes are
collecting, sharing and disseminating information to the
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solider.
This work presents recent advances to develop the re-

source manager that will integrate into the decentralized
data fusion architecture being developed under the ARL
Advanced Sensors CTA (Filipov et al. 2004). Specifi-
cally, the resource manager determines which nodes ac-
tively sense and communicate during each snapshot in or-
der to achieve a tolerable level of geolocalization accuracy
while attempting to maximize the effective lifetime of the
network. The traditional approaches to extend the life-
time are to choose nodes that minimize the energy required
to communicate data (Williams et al. 2005; Chhetri et al.
2004). Unfortunately, those approaches require expensive
dynamic programming over a large time horizon for the
optimization objective to correspond to the UGS network
lifetime.

In this work, we maximize a current-lifetime (CL) metric
that is related to the number of snapshot cycles remaining
in a node given that it continues to share data with the cur-
rent set of active nodes. Unlike the traditional energy met-
ric, a myopic optimization of the CL metric achieves load
balancing, which directly relates to extending the effective
lifetime of the network by preventing essential nodes from
being over utilized too soon. The CL or nonlinear current
lifetime (NCL) metric accounts for both the data sharing
and the handoff when determining the current lifetime. The
CL uses a factor to balance the energy usages of data shar-
ing and handoff while the NCL does not. A fast Greedy
Search to maximize the traditional energy metric, the CL
or NCL under the constraint of geolocalization accuracy
reduces computational complexity to O(N2) , and the use
of Greedy Search is justified as well.

In addition, in this paper, for each energy-aware node
selection approach, the activation decision is performed in
a decentralized manner over the active set of nodes. Each
active node transmits just far enough to reach all the active
nodes for information sharing and handoff. In determining
the active set, an active node optimizes energy-aware met-
rics under a localization accuracy constraint given knowl-
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edge about the physical location of nodes within a radius of
rnei. The radius rnei is a parameter for the node selection
method to control whether local (rnei is small) or global
(rnei is large) knowledge is employed.

The paper is organized as follows. Section 2 in-
troduces the background which includes the models of
the tracking filters, the energy usage model, the existing
geometry-based metric, and partial network knowledge is-
sue. And then Section 3 investigates three energy-aware
multi-objective functions: traditional energy metric, CL,
and NCL. Finally Section 4 shows the experiments to
demonstrate the advantages of CL/NCL.

2 Background

The objective of this work is to investigate node selection
algorithms to balance the tradeoff between the localization
performance and tracking lifetime. A node selection algo-
rithm, which is embedded in the resource manager, deter-
mines which set of nodes should be active at a given time.
The algorithm should maintain a desirable localization per-
formance while extending the tracking lifetime of the sys-
tem. Furthermore, the algorithm is executed at each node in
a distributed manner. In this distributed architecture, each
node must also be capable of implementing track filters,
that is Kalman Filters, to extract useful information out of
the locally obtained measurements, broadcast the interme-
diate results, integrate them into a global state and predict
the state for the next snapshot. The global predicted in-
formation including the predicted target state and the pre-
dicted error covariance is exploited in the node selection
for the next snapshot.

This section first discusses the bearing measurement
model and dynamic model in Kalman Filters. Then, the en-
ergy usage over a single snapshot and an existing geometry-
based metric are given (Kaplan 2006a,b). Finally, we intro-
duce the partial network knowledge.

2.1 Bearing Measurement and Dynamic Models

The bearing measurement obtained at the i-th node for a
given snapshot is the true retarded bearing angle embedded
in additive white Gaussian noise (Kaplan and Le 2005),

θ̂i = θi + ηi, (1)

where θi is the true bearing angle (Kaplan and Le 2005)
given by

θi = θi,0 + arcsin
(v

c
sin(θi,0 − φ)

)
, (2)

θi,0 = Py,0−Sy,i

Px,0−Sx,i
and the second term in (2) accounts for

the propagation delay. The target position and velocity are
labeled as P0 = [Px,0, Py,0]T and V = [Vx, Vy]T , respec-
tively. The target state [PT

0 , V T ] consists of the target po-
sition and velocity. The target speed v = |V |, the heading

is φ = arctan(Vy/Vx), and c is the speed of the sound,
347m/s. The i-th sensor node location is Si = [Sx,i, Sy,i]T .
The measurement error ηi is zero-mean white Gaussian
noise with a bearing measurement variance denoted as σ2

i ,
i.e., ηi ∼ N(0, σ2

i ). In this paper, we assume the standard
deviation σi = 5◦ for for i = 1, 2, . . . , Ns, where Ns is the
number of nodes. The retarded bearing angle model given
by (2) is used to generate measurements in the simulations.
However, the extended Kalman filter assumes that the mean
measurement is the non-retarded bearing θi,0.

The target is assumed to follow a constant velocity dy-
namical evolution given by

x(k + 1) = Fx(k) + Av(k + 1), (3)

where

F =




1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1


 , and A =




0.5T 2 0
0 0.5T 2

T 0
0 T


 .

The vector v(k + 1) represents unknown accelerations as
zero-mean Gaussian noise with covariance Qv = σ2

vI , and
x(k) is the target state for the k-th snapshot. Finally, T is
the time interval between successive snapshots.

2.2 Energy Consumption Model

This paper models the energy consumed for transmitting l
bits over d meters in a multipath environment as

E = l · εamp · d4,

where εamp is a constant to represent the energy expense
of engaging the power amplifiers to transmit sufficient sig-
nal power for delivery of one bit over a range of d meters.
This transmission model was derived from the model used
in (Heinzelman and Chandrakasan 2002), and it assumes
that the energy usage is dominated by the radio rather than
the computer (Raghunathan et al. 2002). Therefore in this
paper we only consider how much energy is consumed due
to radio transmission.

Over a single snapshot how energy is consumed depends
on how activation decision is made. In this paper, the ac-
tivation decision is performed in a decentralized manner
over the active set of nodes after currently obtained infor-
mation is shared among the active set of nodes. To this end,
each active node determines the next active set by evalu-
ating a metric, and decides whether it remains active or
whether it should wake-up and handoff information to inac-
tive nodes that are member of the next active set. Therefore,
the broadcast range should be just long enough to reach all
the active nodes for information sharing and to reach the
next active set for information handoff. Let N and N ∗ be
the currently and next active node set, respectively. As a re-
sult, over a single snapshot, node i in N consumes εd4

i,N∗
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for information handoff toN ∗, and node j inN ∗ consumes
εd4

j,N∗ for information sharing, where ε = l · εamp,

di,N = max
j∈N

{di,j},

and di,j is the distance between node i and node j.

2.3 Geometry-based (GB) Metric

For the purpose of minimizing the estimation error, Kaplan
proposed a geometry-based (GB) objective function to se-
lect the desired number of active nodes (Kaplan 2006a,b).
The Kalman-based root mean squared (RMS) position er-
ror with prior covariance information is used as the objec-
tive function. The state estimates and error covariances are
updated via the extended Kalman filter where the bearing
measurement is assumed to depend only on target position.
Therefore the updated covariance, in a form of information,
is explicitly expressed as

Jf (N ) = Jp +
(

Jm(N ) 02

02 02

)
, (4)

where

Jm(N ) =
∑

i∈N

1
σ2

i

1
r2
i

(
sin2 φi − sin φi cosφi

− sinφi cos φi cos2 φi

)
,

and ri and φi are the 2D polar coordinates of the vector
from the i-th node to the predicted target location. Then
the posterior RMS position error is written as

ρ(N ) =
√

trace([J−1
f (N )]1:2,1:2), (5)

where [A]i:j,k:l represents the (j − i + 1) × (l − k + 1)
subblock of A and Jp represents the predicted error in-
formation, i.e., the inverse of predicted error covariance.
Obviously, ρ(N ) is a function of the node set N and the
predicted target state.

2.4 Partial Network Knowledge

For large sensor networks, a perfect assumption that a node
knows every other node’s location becomes impractical. In
practice, a node will only keep a table about its neighbors,
i.e., the set of nodes within a distance of rnei. Furthermore,
it is reasonable for the nodes within earshot of the active set
to be able to store information about the active nodes. Let
Nnei(i) = {j|di,j ≤ rnei, i 6= j} be the neighbor node set
of the i-th node. Assumably, the active nodes will provide
battery level updates to the other nodes. How partial net-
work knowledge affects node selection approaches is dis-
cussed in Section 3.

3 Energy-aware Node Selection Approach

This section discusses energy-aware node selection ap-
proaches to balance the localization accuracy in lieu of the

energy costs. We focus on comparisons among different
energy-related metrics to extend the tracking lifetime while
maintaining a certain level of tracking accuracy. The ac-
ceptable level of tracking accuracy denoted by ρ0 is user-
defined. A subset of nodes that can meet this requirement
is

Cρ0 = {N |N ⊆ Nknown; ρ(N ) ≤ ρ0} , (6)

where Nknown must reflect the available network knowl-
edge and the power strength of the currently active nodes
N0 (Le et al. 2006), and ρ(N ) denotes the posterior posi-
tion RMS error by (5). Explicitly

Nknown = {{∩i∈N0Nnei(i)} ∪ N0} ∩ Nmr, (7)

where the common reachable node set of the active nodes
is

Nmr =
⋂

j∈N0

{
i|di,j ≤ 4

√
pj

ε

}
, (8)

pj is the j-th node’s remaining power level. One could
maximize or minimize an energy-related metric to obtain
the active set N ∗ for the subsequent snapshot:

N ∗ = arg max
N∈Cρ0

E(N ), (9)

where E(N ) is either CL(N ), NCL(N ), or EB(N ) in
the following subsections.

3.1 Energy-based (EB)

The traditional energy-based metric is the energy usage re-
quired to communicate data (Williams et al. 2005). Since
in our energy consumption model energy is consumed due
to information sharing and handoff, then the energy usage
over a single snapshot could be

EB(N ) =
∑

i∈N0

εd4
i,N +

∑

i∈N
εd4

i,N . (10)

Although it reflects the total amount of energy usage for
information handoff from N0 to N , and information shar-
ing among N , this metric by (10) neglects nodes’ battery
levels.

3.2 Current Lifetime (CL)

Given a node i and a node setN that node i must share data
with, the number of snapshot cycles that node i could run,
known as CL of node i, could a function of node i’s battery
level and energy usage for sharing: pi

εd4
i,N

. Therefore, a

current lifetime metric could be defined as

CL(N ) = λ min
i∈N

pi

εd4
i,N

+ (1−λ) min
i∈N0

pi − εd4
i,N

εd4
i,N0

, (11)

The parameter λ controls the relative weighting of two
terms representing the CLs of node set N and N0 for
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1) data sharing and 2) after information handoff, respec-
tively. One way to obtain a better λ to balance the energy
usages of data handoff and sharing is to sample λ from 0 to
1. Since in the CL metric we include the battery level, we
could avoid the overuse of essential nodes to achieve load
balancing.

3.3 Nonlinear Current Lifetime (NCL)

Instead of using λ to weight the CLs of node setN andN0,
we could treat node set N ∪ N0 as a whole and define its
CL:

NCL(N ) = min
i∈N∪N0

f(i),

f(i) =





pi−εd4
i,N

εd4
i,N0

if i ∈ N0 \ (N ∩N0)
pi

εd4
i,N

− 1 if i ∈ N ∩N0

pi

εd4
i,N

if i ∈ N \ (N ∩N0)





. (12)

The NCL metric not only keeps the virtue of CL met-
ric(capable of avoiding the overuse of essential nodes by
considering nodes’ battery level), but also avoids the use of
balance factor λ.

3.4 Greedy Search

Once the metrics are built, we need a fast search algorithm
for the solution that is the subsequently active node set. Ex-
haustively enumerating the node sets with different sizes to
meet the tracking accuracy ρ0 to get the optimal solution by
(9) is prohibitive. So we use the “add one node at a time”
strategy, known as Greedy search, to build an nonempty
candidate space containing sets that meet ρ0. Fig. 1 shows
the steps of the Greedy search method. Instead of exhaus-
tively enumerating all the node sets with a certain length,
say Md, the Greedy search adds one more node into the ex-
isting suboptimal Md-node setNm(Step 4) and stops when
Ccand is not empty. The computational complexity via
Greedy search consists of exhaustively evaluating 2-node
sets, O(N2), and adding one at a time, O((|N ∗| − 2)N).

In the Greedy search, Md represents the number of active
nodes for the next snapshot. Once an active set of size Md

is found that satisfies the localization constraint ρo, then
the Greedy search terminates. If one is employing the EB
or CL metric, further iteration of the Greedy search will not
lead to a better active set due to the following theorem.

Theorem 1 If N1 ⊆ N2 and ρ(N1) ≤ ρ0, then ρ(N2) ≤
ρ(N1) ≤ ρ0, EB(N1) ≤ EB(N2), and, CL(N2) ≤
CL(N1).

Proof: See Appendix.
Clearly, Theorem 1 justifies the use of Ccand 6= ∅ as the

stopping criteria for the Greedy search (see Fig. 1) when
the EB or CL metric is embedded into the multi-objective
optimization. The Greedy search can still be employed for

1. Md = 2, N = |Nknown|, where Nknown is given
by (7);

2. enumerate all Md-node subsets to form C =
{N ||N | = Md;N ⊆ Nknown},
and Ccand = {N |N ∈ C; ρ(N ) ≤ ρ0};

3. Nm = arg minN∈C ρ(N );

4. while Md ≤ N & Ccand is empty,

C = {N |N = Nm

⋃{j}; j ∈ Nknown \
Nm};

Ccand = {N |N ∈ C; ρ(N ) ≤ ρ0};
Nm = arg minN∈C ρ(N );

Md = |Nm|;
end

5. Cg = Ccand;

6. N ∗ = arg maxN∈Cg E(N );

Figure 1: Greedy search for the joint metric optimization.

the NCL metric even though the stopping criteria does not
guarantee that a better solution will be found by a larger
Md. Future work will investigate other possible stopping
criteria for the NCL metric.

4 Experiments

In the simulations, a target traverses along a straight line
at a constant speed of 10m/s in a 2km×1km field shown
in Fig. 2. The time interval for updating the tracker is set
to 1 second. The goal here is to measure how accurate the
tracking estimates are over the lifetime of the network. We
define the effective lifetime as the earliest point when all
the reachable nodes can meet the error threshold ρ0, that is
when ρ(Nknown) ≥ ρ0.

Fig. 3 shows the performance using (11). Figs. 3(a)
and (b) plot average RMS error versus lifetime for differ-
ent values of rnei for λ = 1 and λ = 0, respectively. Each
point on the curves in Figs. 3(a) and (b) represent a dif-
ferent value of ρ0, where ρ0 varies from 10m to 70m. As
ρ0 increases, so does the localization error (and usually the
lifetime). Each point on the curve is the result of averaging
over 1000 Monte Carlo simulations (100 Monte Carlo runs
for 10 different configurations of UGS networks). Fig. 3(c)
provides the average lifetime performance as a function of
λ when ρ0 = 30m. As expected, a looser constraint on the
position accuracy leads to a longer network lifetime. For
a given position error, the lifetime is longer when λ = 1
than when λ = 0 for a given value of ρo and rnei. In other
words, it is more important to consider the data sharing cost

4
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Figure 2: Node configuration with twenty nodes where ◦
denotes the node and the solid line denotes the true target
track along which a target comes back and forth for an in-
finite time.

than the cost for a dormant node to join the active set. How-
ever, when λ = 1, the incorporation of global knowledge,
i.e., large rnei, can actually lead to shorter lifetimes as com-
pared to smaller rnei because the active nodes can choose
a different set of faraway active nodes for the next snap-
shot when the handoff costs are neglected. In Fig. 3(a),
rnei = 800m is best while in Fig. 3(b), rnei = 1200m
is best. For most values of rnei, the lifetime is actually
longest for λ slightly larger than zero. Therefore, both the
data sharing and handoff costs must be considered in (11).

Fig. 4 shows the performances of different energy-
related metrics denoted by (10), (11) and (12) as a function
of rnei for a given ρ0 = 30m. The available neighbor infor-
mation rnei varies at 0, 600, 800, 900, and 1200m. Again,
each point is the result of averaging over 1000 Monte Carlo
simulations (10 different configurations of UGS networks
and 100 Monte Carlos for each node configuration). Fur-
thermore, the lifetime of each point on the CL curve is the
best among the samples of λ. When rnei is larger than
600m, the NCL is the best. The NCL is better than the CL
because the NCL computes the minimum current lifetime
among the nodes of the currently active node set and the
next active node set instead of treating the current lifetimes
of the currently active node set and the next active node
set separately. The NCL is also better than the traditional
EB metric because overuse of the essential nodes could be
avoided when nodes’ battery levels are taken into account
in a metric. However the advantage of considering the bat-
tery levels in the CL over EB is not clear. The reason might
be that the tradeoff between data sharing and handoff, i.e.,
λ, is not properly accounted for when ρ0 is relatively small.
We increase ρ0 to see whether the CL could outperform the
EB, and the result with increasing ρ0 is shown in Fig. 5.

Fig. 5 shows the performances of different energy related
metrics denoted by (10), (11) and (12) as a function of ρ0

when rnei = 600m. The error threshold ρ0 varies at 30, 50,
70, 100, 150 and 200m. Again, each point is the result of
averaging over 100 Monte Carlo simulations (10 different
configurations of UGS networks and 10 Monte Carlos for
each node configuration). We choose λ = 0.5 and λ=0.01
to plot the CL, and the lifetime of λ = 0.5 is longer than
λ = 0.01, which is consistent with Fig. 3.c when rnei =
600m. The figure shows that for looser accuracy tolerance,
both the CL and NCL can extend the lifetime the of the
network relative to the EB metric.

5 Conclusions and Future Work

We improved energy-related metrics to extend the effec-
tive tracking lifetime under the constraint of a user-defined
tracking error. The CL/NCL accounts for not just the en-
ergy usage for information sharing and handoff, but also the
battery levels of nodes, while the traditional EB metric is
simply the energy usage over a single snapshot. Simulation
results show that the CL/NCL metric provides longer life-
time than the EB metric under the larger error thresholds.
Future work will compare the performance of the myopic
optimization CL/NCL metrics against nonmyopic schedul-
ing for the M -step horizon energy usage, i.e., EB, metric.
We also plan to investigate alternative efficient searching
and stopping criteria for the EB metric.

6 Appendix

Proof of Theorem 1

Proof : Proof of ρ(N2) ≤ ρ(N1) could be seen in (Le
et al. 2006).

Suppose that we add one more node m into N1 to form
N2 = {m,N1}. Then we have

EB(N2) =
∑

i∈N0

d4
i,N2

+
∑

i∈N2

d4
i,N2

=
∑

i∈N0

d4
i,N2

+
∑

i∈N1

d4
i,N2

+ d4
m,N2

.

Since di,N2 = max{di,N1 , di,m} ≥ di,N1 , then,
EB(N1) ≤ EB(N2).

In addition,

CL(N2) = λ min
i∈N2

pi

εd4
i,N2

+ (1− λ) min
i∈N0

pi − εd4
i,N2

εd4
i,N0

= λmin

{
min
i∈N1

pi

εd4
i,N2

,
pm

εd4
m,N1

}

+(1− λ) min
i∈N0

pi − εd4
i,N2

εd4
i,N0

≤ λ min
i∈N1

pi

εd4
i,N2

+ (1− λ) min
i∈N0

pi − εd4
i,N2

εd4
i,N0

5
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Figure 3: Performance of node selection using (11): (a)
RMS position error vs. lifetime when λ = 1, (b) RMS
position error vs. lifetime when λ = 0, and (c) lifetime vs.
λ when ρ0 = 30m.
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Figure 4: Performance of node selections using different
energy-related metrics as a function of rnei when ρ0 =
30m.
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≤ λ min
i∈N1

pi

εd4
i,N1

+ (1− λ) min
i∈N0

pi − εd4
i,N1

εd4
i,N0

.

Therefore, CL(N2) ≤ CL(N1).
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